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The Stewart platform manipulator  is a closed-kinematics chain robot  manipulator  that is 

capable of providing high structural rigidity and positional accuracy. However, this is a complex 

and nonlinear system, so the control performance of the system is not so good. In this paper, a 

new robust motion control algorithm is proposed. The algorithm uses partial  state feedback for 

a class of nonlinear systems with modeling uncertainties and external disturbances. The major 

contribution is the design of a robust observer for the state and the perturbation of  the Stewart 

platform, which is combined with a variable structure controller (VSC). The combination of  

controller and observer provides the robust routine called sliding mode control with sliding 

perturbation observer (SMCSPO).  The optimal gains of SMCSPO, which is determined by 

nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function 

that evaluates the gain optimization is to put sliding function. The control performance of  the 

proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart 

platform. The results showed high accuracy and good performance. 

Key Wards  : Sliding Perturbation Observer, Sliding Mode Control, Genetic Algorithm, Gain 

Optimization 

1. I n t r o d u c t i o n  

The Stewart platform manipulator  is the mani- 

pulator that has the c losed- loop structure with an 

upper plate of end-effector and a lower plate of  

base frame (Stewart, 1966). The Stewart platform 

manipulator has the merit with high working 

accuracy and rigid stiffness compared with a seri- 

al one. However, this has a complex structure, so 

a control performance of the system is not so 
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good (Hashimoto et al., 1987). 

The major contribution of  the design of  robust 

controller for the Stewart platform manipulator  

introduces the development and design of robust 

observer for the state and the perturbation which 

is integrated into a variable structure controller 

structure (Slotine et al., 1987). The combination 

of controller and observer gives rise to the robust 
routine called sliding mode control with sliding 

perturbation observer. Sliding observer is a high 

performance state estimator well suited for non- 

linear uncertain systems with partial  state feed- 

back (Elmali and Olgac, 1992). Then system is 

not required addit ional sensor. The sliding func- 
tion of this observer consists of the estimation 

error of  the available output. The sliding observer 
doesn't need a full state feedback in the pertur- 

bation estimation and reduces the implemen- 
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tation costs (Slotine et al., 1987). The combined 
observer which is able to provide much better 
state estimation accuracy is named sliding per- 
turbation observer (SPO) (Terra and Olgac, 
1997). The combination of this SPO and sliding 
mode controller (SMC) results in a high per- 
formance algorithm that is robust against per- 
turbations, utilizes only partial state feedback. 

In this paper, a new robust motion control 
algorithm using partial state feedback for a class 
of nonlinear systems with modeling uncertainties 
and external disturbances is proposed. The algo- 
rithm is applied to the Stewart platform to evalu- 
ate the control performance. The optimal gains of  
the motion control algorithm are easily obtained 
by genetic algorithm. 

This paper is organized as follows: In Section 
2, design of sliding perturbation observer is in- 
troduced. In Section 3, composition of controller 
and algorithm for selecting robust control gain is 
proposed. In Section 4, the proposed approach is 
evaluated through simulation and experiment. 
This paper concludes in Section 5. 

2. Design of Sliding Perturbation 
Observer 

This section describes the proposed perturba- 

tion observer without considering the closed- 
loop control. The developed Stewart platform for 
a vehicle simulator is shown in Fig. 1. 

2.1 Definition of perturbation 
Generally, the governing equation of the "j"-th 

actuator with n-degree of freedom is defined as 

n 

~j=f~(x) +,dfj(x)  + ~.[ (ha(x) +ribs (x ) )u , ]  ,=i (1) 
+d~(t) ,  ( j = l ,  "", n) 

where 

x ~  [X1, "", gn ]  r : state vector 
Xr ~ [xr :~s] r : state variable 

zl fs(x)  : uncertainties of nonlinear driving terms 
z:Jbri(x): uncertainties of the control gain matrix 
dr(t) : external disturbance 
ui : control input 

fr, bri : continuous functions of state 
"i" : symbol  which represents elements of 

control gain matrix effected by control 
input. 

In the governing equation, perturbation is de- 
fined as the combination of  all the uncertainties 
and nonlinear term of Eq. (1). 

n 

~ ( x ,  t) =,rift(x) + ~ [ ~ b ~ . ( x )  u,] +dr ( t )  (2) 

The control task is to derive the state x toward 
a desired state Xd=--EXld..X~a] r in spite of 
these perturbations (Elmali and Olgac, 1992). It 
is assumed that the perturbations are upper 
bounded by a known continuous function of the 
state : 

=Fr(x) +~1 ~r,(x) u, I ~ (x ,  t) (3) 
+Oj(t) >1 ~(t)  l 

where Fa >l ~fr  I, ~ >l z/bai I, Dr >[ dr { repre- 
sent the expected upper bounds of the uncertain- 
ties, respectively. 

Fig. 1 The Stewart platform for a vehicle driving 
simulator 

2.2 Sliding perturbation observer 
Sliding perturbation observer is the combina- 

tion of a perturbation observer and sliding ob- 
server, which results in a more effective observer 
structure. Before integrating SPO into SMC, it is 
convenient to decouple the control variable using 
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the following transformation. The new control 

variable which is used in order to decouple the 

control of Eq. (1) is defined as 

n 

f~(Yc) + ~b~,(Yc) u , = a ~  (4) 
i = 1  

where .~ is the estimated state vector, ota~ is an 

arbitrary positive number and zl~ is the new con- 

trol variable (Terra and Olgac, 1997). Through- 

out the text, " - " ,  refers to estimation errors 

whereas " ^ ' '  symbolizes the estimated quantity. 

The original control vector of Eq. (1) is obtained 

a s  

u = B  -~ Col [ a ~ z ~ - f ~  (~) ] (5) 

where u = [ u a ,  "", Un]r and B=~b~'(YC)]n×~. 
Transformation of  Eq. (4) simply allows us to 

write the system dynamics. The state represent- 

ation of  the simplified dynamics is given by 

,~l~=xz/ (6a) 

.~2j = a,s./z~ + ~ (6b) 

y~=x~ (6c) 

where "j" is the number of hydraulic actuators. 

Let xaj be a new state variable defined as 

xz~= a~xz,~- ~ /  a~ (7) 

It is desirable to observe the variable xaj and 

consequently calculate ~ using Eq. (7) instead of 

estimating them directly. In order to accomplish 

this, it is assumed that 
(1) the time derivative of  grs exists (i.e., there 

are only continuous perturbations) and is bound- 

ed, 
(2) the spectrum of  ~ lies within a known 

finite frequency range. 
Note that the assumption 1 can not hold at the 

instant of discontinuities in the perturbation sig- 

nal (e.g., dry friction at zero velocity point).  
The structure of the sliding perturbation ob- 

server consists of  the perturbation observer and 

sliding one. The sliding perturbation observer 
utilizes only partial  state feedback (Xl~ in this 

treatment). Consequently, it is necessary to esti- 
mate xz,. in order to obtain the estimated per- 
turbation ~ .  The sliding perturbation observer 

is better than the general perturbation observer 

because this observer can provide an on- l ine  

perturbation estimation scheme using only partial  

state feedback. The estimation accuracy of  x~ , 

improves at least to the order of  the perturbation 

estimation accuracy. This structure (Slotine et al., 

1987) can be achieved by writing the observer 

equation as 

~l~=~zi - klssat (~1~) - at~?~ (8a) 

~z~=~{cj-k2~sat(~ti) - a ~ +  ~j  (8b) 

~f3j = a~ ( - ~  + a3j.~a + ~i) (8c) 

where ~ j  is derived as 

~ j  = a3~ ( --.~as q- aa~.~z/) (9) 

kt~, kz/, al~, azj are positive numbers, ~'tj---- 

.~l j --xl j  is the estimation error of the measurable 

state, and sat (a?l~) is the saturation function for 

the existence of  sliding mode. 

3. Compos i t ion  of  Control ler  and Ga in  
O p t i m i z a t i o n  of  S M C S P O  

3.1 Design procedure 
As integrating SMC law and SPO scheme, 

SMCSPO of robust nonlinear controller is strong 

against perturbations. For  the system of  Eq. (6), 

we define the estimated sliding function as 

g~ = bj + c,a~; (10) 

where c ja(>0)  is a slope of switching line and 

~ (=:~l~--Xl,~) is the estimated position tracking 

error. [xl,o" :~,,o] r is the desired states for the 

motion of  the Stewart platform. The control zij is 

selected to enforce ~gj-<0 outside a prescribed 

manifold. A desired gj- is selected as 

L = - I f ~  sat(gi) (11) 

where " 

= f  g~/] gJ l, i f [  gj I>e,~ 
sat (~j) (12) 

1 gj/e~, if l ~  I<e,,- 

is used due to its desirable anti-chatter properties 
and K~(K~>0) is the robust control gain. In this 

equation, es~ represents the width of boundary 
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layer of  the SMC, which is different value with 
the boundary layer eo~ in SPO. 

Using Eq. (8), Eq. (9), Eq. (I0), Eq. ( l l ) ,  and 
Eq. (12) it is possible to compute s~ as 

L= c ~  ~ - [ k~ / eo~ + c,~ ( k~/ eo~ ) - ( k~/ eoj ) ~].~ ~ 
+~,dJ+ Ga (~Zi--2ta,') + ~j (13) 

The resulting ] gj ]-dynamics including the effects 
of £z~ is selected as 

~ = - ~ .  sat(g~) -(k~/eo~)£2~ (14) 

In order to enforce Eq. (11) when £z~=0, a con- 
trol law is selected as 

U'-  a3~--I { - K j  sat (g~) - (kt~/eo~) ~ 
+ [kzi/8o.i+ cat (klj/eoy) - (kt.i/eoj)2]xL/(1 S) 

+ ~ . -  c,~ ( J ~ - ~ . )  -$~#~  } 

where /~'~ is positive gain of  perturbation and 
/3s{~s is upper bounded by a known continuous 
function of the state such as Eq. (3). 

The conditions for the existence of sliding 
mode are given by 

{ £1/I £t.~ l, if l-g~ I > eo~ 
sat  £t~eo~, if [ 3¢t/ [ ~ eoj (16) 

where eo~ is the boundary layer of the sliding 
perturbation observer. 

The observer's sliding mode takes place on the 
line £ts=O of the observer state space £1j VS £2i. 
Fig. 2 depicts a typical state space trajectory. The 
condition for the existence of sliding mode are 

£2<a~£~+k~ (if £1 >0) (17a) 

3~2~G1Xl--kl (if £~<0) (17b) 

V ~,~0 

*}  

................. ~ k I 

V ~,<_o I 
Fig. 2 Observer state space and sliding mode 

From the sliding condition Eq. (16), the state 
estimation error is bounded by ]£zJ I < kay. There- 
fore, in order to satisfy ~jg<0 outside the mani- 
fold [gy]<eo~, the robust control gains must be 
chosen such as I~.~kal~/eoj. 

A systematic general design procedure consi- 
dering the hardware limitations of  the system 
describe by the fact that the eigenvalue of the 
characteristic equation of systematic matrix of  
observer and sj dynamics is negative real number. 
For simplicity, all the desired poles are selected 
to be the same real valued location A = - - ~ ( ~ >  
0). This leads to the following design solution. 

klj . ,  k2~ _ ~ ,~a-d - - = J A a ,  Ot3j~--- 
~ o j  k l j  - -  A d ,  , V Y  (18) 

Physical limitations of the control system define 
the optimum placement of/]a. The ~ is effected 
by hardware constraints such as sampling fre- 
quency, dominant time delay, measurement delay 
and actuator dynamics. 

3.2 Gain optimization using genetic algo- 
rithm 

To evaluate the designed observer performance 
in frequency domain, the magnitude plots of 
SPO and sliding observer (SO) when perturba- 

tion occurs in system are compared as shown in 
Fig. 3. SPO clearly yields higher attenuation up 
to approximately ~/Aa=0.4. This means better 
estimation accuracy within this normalized value 

Normal ized Lap lace  Transform 
10 ~ - / 

=;0 

10 "= l f f  ~ 10 ° 101 10 = 
Frequency (rad/sec) 

Fig. 3 Bode plots of  SPO and SO 
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frequency. The magnitude plots of s~ (P) / ~ ( p )  

for SMC and SMCSPO with perturbation are 

compared as shown in Fig. 4. For  high frequency 

contents of ~ ,  both algorithms produce the same 

result. In the mid-frequency range, the maximum 

discrepancy is about 10 dB in favor of  SMC. In 

the lower frequency rangl, however, SMCSPO 

performs better than SMC up to a selected fre- 

quency A~ equal to 0.1/]a, which should be set 

higher value than the expected perturbation fre- 

quencies so that the attenuation rate of  SMCSPO 

may be larger than that of SMC. It is important 

to note that the SMC does not reguire full state 

feedback. There is no measurement noise in 

SMCSPO because chattering is reduced. The se- 

lection of optimal placement o f / l a  is very hard 

due to physical limitations of  the control system. 

In this paper, the optimal gain An is selected 

by the genetic algorithm. The scheme of the 

Normalized Laplace Transform 
2 0 ~ - T - ~ T ~ - ~  ..... T--T~"~'.) ~. --~--F~ ~ 77- ! ' ~ ='-~ 

] 

/ 
Q" -90 ~-- : i  11 

i.1 
10 "= I(Y' 1o* 10' 10 2 

Frequency (rad/sec) 

Fig. 4 Bode plots of SMC and SMCSPO 

i=pm 

Genetic Algorithm 

Fig. 5 The scheme of the genetic algorithm 

genetic algorithm is shown in Fig. 5. This algo- 

rithm searches the robust control gain using the 

principles of natural selection. The objective func- 

tion to optimize the gain consists of the estimated 

sliding function. The error function and fitness 
function are given by 

Se=t~=o(f~=l[gi(t)[) (19) 

W 
fGA=I +S, (20) 

where g(t) is the estimated sliding function for 

each sampling time, W is the weighting factor, 

and error function is the sum of the absolute 

value that calculated sliding function. This func- 

tion has an effect on optimizing by the velocity 

and position errors. As the value of error function 

is reduced, the fitness function is to reach the 

maximum fitness. The number of generation is 

500. The slope of sliding surface is selected by 
21.43. 

4. Simulation and Experiment 

4.1 Modeling of Stewart platform 
The dynamic equation of the Stewart platform 

considering all inertia effect is known to be very 

difficult to derive. Lebret derived the dynamic 

equation using the Lagrange method and virtual 

work principle (Park and Lee, 2002). This equa- 

tion is written as 

M~,(q)?~+Cv(q, ~ l )g l+Gp(q)=]rup  (21) 

where q =  Ix, y, z, a, /~,  7] is coordinates vector 

of the upper centroid and a, fl, 7 are the rota- 

tional angles about the x, y, z axes. M p ( q ) ~  
R 6×6 is the inertia matrix, C p ( q ) ~ R  6×s cor- 

responds to the centrifugal and Coriolis forces 
matrix, Gp ( q ) E R  6×' is the gravity force vector, 

. ] ( q ) ~ R  ~×6 is Jacobian matrix, and Up(q)E  
R 8×1 is cylinder force vector. After some alge- 

braic operation ( /= ] t~ )  and kinematic transfor- 
mation, Eq. (21) can be expressed as 

i~,,(q)l'+g,,(q, ,~)l+C~(q)=Up (22) 

where l=[ l l ,  12, 13, 14, 15, IB] is cylinder length 
vector and 
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/l~e (q) = ] - r  (q) M (q) ]-1 (q) 

Ce( q, ( l ) = J - r ( q ) M ( q ) - f f { J - t ( q )  

+]-r(q) c(q, O)]-l(q) 

Ge(q) = ] - r  (q )G(q )  

The cylinder dynamic equation is high order 
nonlinear equation. If  it is assumed that non- 
linear part acts as a disturbance to the model, 
simple linear dynamics is obtained as 

Mff  + cal + U~=K~Ua (23) 

where MA is the summation of equivalent masses 
of all the translational part in the cylinder, Ca is 
the equivalent damping coefficient, and Ksv is a 
spool constant. Therefore, the complete nominal 
dynamic equation of  the Stewart platform system 
including the manipulator and cylinder dynamics 
is derived as 

Mr(q)  f +  Cr(q ,  q) l+Gr(q )  =KsvUA (24) 

where Mr=Me+M,a ,  Cr=Ce+CA, Gr=Ge(q) .  
After separating linear element and nonlinear 
element in Eq. (23), this equation can be re- 
expressed as 

Mrz[+ Crzl + F=KsvUa (25) 

where Mrz and CrL is the summation of all linear 
terms in Mr and Cr. The disturbance term F is 
the summation of  the nonlinear terms of  inertia 
moments, the Coriotis and centrifugal force, the 
gravity force, and the friction force. The unknown 

parameters MrL and CrL are estimated by the 
signal compression method which is used to 
get equivalent impulse response (Park and Lee, 
2002). The estimated parameters are listed in 
Table 1. 

4.2 Simulation 
Fig. 6 is the reference trajectory of the Stewart 

platform. The motion of  the platform is composed 
of the combination of roll and translation. The 
linear model of  hydraulic actuator is derived as 

X lj.~ X2j 
(26) Beq , K s v  

Table 1 Estimation results for the Stewart platform 

Cylinder No. Direction 

expansion 

retraction 

expansion 

retraction 

expansion 

retraction 

expansion 

retraction 

expansion 

retraction 

expansion 

retraction 

(-On, 

16.0, 

13.0, 

15.0, 

13.0, 

15.0, 

14.0, 

15.0, 

14.5, 

15.5, 

14.5, 

15.0, 

13.0, 

MrL (kg), CrL 

0.7 90.8, 2034.1 

0.8 91.7, 2024.8 

0.7 103.3, 2169.7 

0.8 91.7, 2024.4 

0.7 103.3, 2169, 7 

0.7 79.1, 1771.3 

0.7 103.3, 2169.7 

0.8 73.7, 2024.4 

0.7 96.8, 2099.7 

0.8 85.0, 1959.1 

0.7 103.3, 2169.7 

0.8 91.7, 2024.8 

1.6. 

1.$- ~ 1.4. 

~1 .3 .  

~ 1 . 2  

1.1 

CyllnekDr 1 
. . . .  c ~ u x ~ 2  

. ...... . C~ln~r 3 
. , ' - '  . . . .  -'?., . . . . . . .  C y l i n d e r  4 

,~:"" . . . . .  " " , . ,  - . . . . .  C y l i n d e r  $ 

Time [$e¢] 

(a) Reference trajectory for position 

0,2.  

0.1 

i 0.0 

~ 4).1- 

4).2, 

, C y l i n d e r  1 
. . . .  c ~ . d ~ 2  

. . . . . .  C y l i n d e r  4 
, . . , .  ~ / ' ' '  - - - C y l i n d e r 5  

: ;  "" ~ ~.. , '  f ~ x ~  , • .. . . . . . .  C y l i n d e r  6 
?" . ; , ,  , 

i i i i 
Time [s~l  

(b) Reference trajectory for velocity 

Fig. 6 Reference trajectory 
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where Ksv is the constant o f  spool,  [xl x2] is the 

state vector o f  hydraul ic  cylinder 's  rod, B ~  and 

Meq are the equivalent  viscosity and the equiva-  

lent mass, respectively. The  control  loop  is closed 

at 100 Hz sampling rate as well. It is assumed that 

the sampling period is dominan t  t ime delay o f  the 

closed loop system. In the result o f  s imulat ion,  

it is shown that the control  performance is so 

2- 

0- 

.4- 

41 

1000. 

' ~  600. 
F_., 
O 
i ,  400. 

~00. 

700- 

~ 600 j 
i s00. 

~,,0 

' " ' "  . . . . .  "i 

~ e r  t 
/ . . . .  C ~ d w '  2 

/ . . . . . .  C~nd,~ 3 
/ ....... Cylinder 4 
/ ........ Cylinder 5 

~/ ........ Cylinder S 

Time [secl 
(a) Position tracking error 

, Cy,nd~ t 
. . . .  e , / k w  2 
....... e ~ n d ~  3 
. . . . . . .  Cylinder 4 

. .  - . . . . . . .  C y l i n d e r  5 

~..- s" ~', - . . . . . . . .  C y l i n d e r  6 

Time [secl 
(c) Input torque of the system 

0.04 - 

O.~- 

l 
~ .0.04. 
t .  

~ 4).OIB- 

0 

l 
I 

! 

0.2. 
Cylinder 1 

. . . .  C~kx~r 2 

. . . . . . .  C y l i n d e r  4 0 .1  • 

. . . . .  C y l i n d e r  5 

. . . . . . . . .  C y l i n d e r  6 

3 
. . . . . .  " ~  " I U.~) -0.1. 

- "0 

30O 

Time [see] 

(e) Actual nonlinear term of the system 

-0.2 

Fig. 7 

- -  e y l i n d t r  1 

. . . .  e ~ 2  

. . . . . . .  c ~ 3  

. . . . . . .  C y l i n d e r  4 

. . . . . . . .  C y l i n d e r  5 

. . . . . . . . .  C y l i n d e r  6 

0 2 4 6 

T i m e  [ s e e ]  

(b) Velocity tracking error 

C y l i n d e r  1 

. . . .  Cy, nd~ 2 

. . . . . . .  C ~ i n d ~  3 

. . . . . .  C y l i n d e r  4 

. . . . . . .  C y l i n d e r s  

. . . . . . . . .  C y l i n d e r  6 

i i i i 
T i m e  [ s e e ]  

(d) Perturbation estimate 

Actual 
. . . . .  P r e d i c t e d  

Time [sec] 

(f) Sliding surface of the robust controller 

Results of simulation of sliding mode control with sliding perturbation observer 
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good as shown in Fig. 7 (a) (b). 

Also, the chattering problem did not occur as 

shown in Fig. 7(c). The magnitude of the cal- 

culated nonlinear term is similar to the estimat- 

ed perturbation term as shown in Fig. 7(d). In 

Table 2 Parameter selections of simulation 

Parameter value 

ktj/ eoj 60 

k~/ kl~ 20 

a3~ 2.58 

Ks/ eoj 20 

c~ 20 

Beq 2000 

M~q 100 

sliding surface of the robust controller, the pre- 

dicted results are similar to actual ones. Also, the 

control performance is so good as shown in Fig. 

8 in comparison of the estimated perturbation 

with compensation of the estimated perturbation 

term. Table 2 is the parameter for simulation. 

4 .3  E x p e r i m e n t a l  r e s u l t s  

In order to evaluate the proposed control algo- 

rithm, SMC is compared with SMCSPO. The 

control input of SMC is given by 

u j = l {  - K j  s a t ( s j )  - c~e~+  0as } (27) 

where I is the inertia matrix, Kj=d iag[K~]  

(E).>0), e j= [~ l . . ~e ]  r, sat(sj)=[sat(sl). .  
sat (s6) 3 r, and 0 o =  I-0~a" 0B~] r 

4 -  

2- 

0- 

-2- 

-4- 

° 

2 0 -  

10- 

0- 

-10. 

-20 

Estimated Perturbation 
. . . .  Compenmmem of Estimated PertumaU~m 

0 i i ~ 
Time [sec] 

(a) Comparison of position error 

Fig. 8 

800. 

200. 

0 

(b) Comparison of input torque 

Comparison of extimated perturbation with compensation of estimated perturbation 

/ " - ' ~ "  . . . .  ~ , w  z 
3 

r4 
d~'$ 

......... Cylinder 6 

Tin~ Ise¢l 

(a) Position tracking error 

Fig. 9 

t6001 

O, 
0 2 4 6 

nine lsec] 
(b) Input torque of the system 

Results of experiment of sliding mode control 

Cyflnd~r I 
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10- 
Cylinder 1 

. . . .  ¢yllndw 2 

...... eyUndw 3 
$ . . . . . . .  Cylinder 4 

' ~  . . . . . .  Cylinder $ 
.S. Cylinder 6 

- t 0  

12oo. 

800. 

i , , , q  

E 
F .  4oo 

E" . 
' 9 "  o -  

.400 

0 2 4 6 8 

Time [see] 

(a) Position tracking error 

. . . .  cy,a~r 2 ~;¢ 

....... cytaK~r ~ 

. . . . . . .  Cylinder 4 

........ Cylinder 5 

. . . . .  - - - -  G~, In(kl~" 6 

TUns [sac] 
(c) Input torque of system 

Fig. 10 

1 . 6 -  

1 . 5 -  

~ 1 . 4 -  

1 , 3  

1.1 

, I t "  

14 

~ -12- 

-16  

. . . - - . .  

..~ ....... _.. 

........ Cylinder 5 

......... Cylinder $ 

Time [sec] 

(b) Position tracking trajectory 

- -  Cylinder 1 
. . . .  Cy,.der Z 
. . . . . . .  Cyen~r 3 
. . . . .  Cylinder 4 

Time lsee] 

(d) Perturbation estimate 

Results of experiment of sliding mode control with sliding perturbation observer 

The control gains are selected as K~=20.43 

and c~=20.43. The Stewart platform is used in 

experiment. The results of experiment of sliding 

mode control are shown in Fig. 9. The results of 

experiment of sliding mode control with sliding 

perturbation observer are shown in Fig. 10. The 

robust gain A~ is same to the gain of the simula- 

tion using the genetic algorithm. 

In the results of experiment of SMC, initial 

position tracking error is occurred within about 

15 mm. However, the errors are converged within 

about 8 mm during roll motion in Fig. 9(a). 

Also, the problem of chattering is depicted in 

Fig. 9(b).  Fig. 10 shows that SMCSPO yields 

better performance with less control activity. 

The reason for this is the reduction of noise 

in the velocity feedback which appears in SMC. 

Fig. 10(a) shows that the position tracking errors 

are converged within about 1~2  mm. The per- 

formance of SMCSPO is superior to SMC. 

5. C o n c l u s i o n s  

This paper proposed a robust control algo- 

rithm for the Stewart platform and described 

gain optimization of the control algorithm. The 

proposed control algorithm can reduce the in- 

herent chattering as estimating the states and 

compensating a perturbation in accuracy. The 

sliding perturbation observer is, therefore, prov- 

ed to be superior to the conventional sliding ob- 

server. The performance of SMCSPO is shown 

to be limited by the dominant time constant of the 

control process. The optimal gains of SMCSPO 

are easily obtained by genetic algorithm. The 

proposed fitness function to optimize the gain is 
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defined using the sliding function. The simulation 

and experiment results show that SMCSPO can 

provide reliable tracking performance. This study 

is noticeable in that the same gains were used 

both in simulation and experiment. Moreover, 

the robust control algorithm does not require 

addit ional sensor in the system. 
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